TED (15/19) 1002 (Revision -2015/19)

A25 - 8995

Reg. No..... Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2025

ENGINEERING MATHEMATICS – I

[Maximum Marks: 100]

[Time: 3 Hours]

PART-A

[Maximum Marks: 10]

- I. (Answer *all* questions in one or two sentences. Each question carries 2 marks)
 - 1. Prove that $(\sin A + \cos A)^2 = 1 + 2 \sin A \cos A$.
 - 2. Prove that $\sin 60 \cos 30 + \cos 60 \sin 30 = 1$
 - 3. Find the area of a triangle if a=4cm, b=5cm, c=7cm
 - 4. If $y = x \sin x$. find $\frac{dy}{dx}$?
 - 5. Find the rate of change of volume of a sphere w.r.t the radius ?

(5 x 2 = 10)

PART-B

[Maximum Marks: 30]

- **II.** (Answer any *five* of the following questions. Each question carries **6** marks)
 - 1. Prove that $\cos \pi/8 + \cos 3\pi/8 + \cos 5\pi/8 + \cos 7\pi/8 = 0$.
 - 2. If $A+B=45^{\circ}$ Prove that (l+tanA)(l+tanB)=2
 - 3. 2(bc CosA+ca CosB+ab CosC)= $a^2+b^2+c^2$
 - 4. If x=a(cost+tsint), y=a(sint-tcost). Show that $\frac{dy}{dx}$ = tant.
 - 5. Differentiate 'cosx' using first principle.
 - 6. The displacement of a body is given by $x=4\cos 3t+5\sin 3t$. Show that the acceleration of the body is always proportional to the displacement.
 - 7. A cylindrical can open at one end is to have a volume of 64π cm³. Find the radius and height such that the metal used is a minimum. (5 x 6 = 30)

PART-C

[Maximum Marks: 60]

(Answer one full question from each Unit. Each full question carries 15 marks)

UNIT - I

III. (a) Prove that $\frac{\sin x}{1+\cos x} + \frac{1+\cos x}{\sin x} = 2 \csc x$.	(5)
--	-----

(b) Prove that $\sin 120 \cos 330 + \cos 240 \sin 330 = 1$ (5)

(5)

(c) If tanA=3, tanB=1, A and B are acute angles. Find cos(A-B).

OR

IV. (a)	Express $\sqrt{3} \cos x + \sin x$ in the form R Sin(x+ α), where α is acute. Find R and α ?	(5)
(b)	If sin A = $\frac{-3}{5}$, sin B = $\frac{12}{13}$ A lies in third quadrant, B lies in second quadrant.	

Find $\cos(A+B)$ and $\sin(A-B)$. (5)

(c)
$$(\cot A-1)^2 + (\cot A+1)^2 = 2 \operatorname{Cosec}^2 A.$$
 (5)

UNIT - II

V. (a) Prove that $\frac{\sin 3A}{\sin A} + \frac{\cos 3A}{\cos A} = 4 \cos 2A$.	(5)
(b) Prove that $sin50 - sin70 + sin10 = 0$	(5)

(c) Show that $a(b^2+c^2)\cos A + b(c^2+a^2)\cos B + c(a^2+b^2)\cos C = 3abc$ (5)

OR

VI. (a) Prove that $\frac{\sin 2A + \sin 5A - \sin A}{\cos 2A + \cos 5A + \cos A} = \tan 2A$ (5)

(b) Prove that
$$\frac{(cotA - tanA)}{cotA + tanA} = cos2A$$
 (5)

(c) Solve $\triangle ABC$, given a = 4cm, b = 5cm, c = 7cm. (5)

UNIT-III

VII. (a) $\lim_{x \to \infty} \frac{x^3 - 2x + 3}{2x^3 - 4x + 6}$.	(5)
(b) Differentiate 'sinx' by method of first principle.	(5)
(c) Find log $(x + \sqrt{1 + x^2})$	(5)

OR

VIII. (a) Evaluate $\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}$. (5) (b) Find $\frac{dy}{dx}$. If $x^2y^2 = x^3 + y^3 + 3xy$. (5) (c) If $y = x \cos x$, prove that $y'' + y + 2 \sin x = 0$ (5)

UNIT - IV

IX.	(a) Find the equation of the tangents and normals of the curve $y^2=4ax$ at (a,2a).	(5)
	(b) The distance travelled by a particle moving along a straight line is given by	
	$S=2t^3-9t^2+12t+6$. Find the value of 't' when the acceleration is zero.	(5)
	(c) The perimeter of a rectangle is 100m. Find the sides when the area is maximum?	(5)
	OR	
Х.	(a) Find the equation of the tangents and normals of the curve $x^2+y^2=25$ at (3,-4).	(5)
	(b) A ballon is spherical in shape. Gas is escaping from it at the rate of 10 cc/sec.	
	How fast is the surface area shrinking when the radius is 15cm?	(5)
	(c) Find the minimum value of $2x^3-3x^2-36x+10$.	(5)
