N22 - 02057

Reg. No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2022

ENGINEERING MATHEMATICS – II

[Maximum Marks: 100]

[Time: **3** Hours]

PART-A [Maximum Marks: 10]

I. (Answer *all* questions in one or two sentences. Each question carries 2 marks)

- 1. Solve for 'x' if $\begin{vmatrix} x & 12 \\ 3 & x \end{vmatrix} = 0$
- 2. Find the 4th term of $(x + \frac{1}{r})^{10}$
- 3. Evaluate $\int tan^2 x \, dx$.
- 4. Evaluate $\int_0^1 \frac{1}{1+r^2} dx$. 5. Solve $\frac{d^2y}{dx^2}$ = sinx.

 $(5 \times 2 = 10)$

PART-B

[Maximum Marks: 30]

- П. (Answer any *five* of the following questions. Each question carries 6 marks)
 - 1. Show that the points whose position vectors are $-2\hat{a} + 3\hat{b} + 5\hat{c}$, $\hat{a} + 2\hat{b} + 3\hat{c}$, and $7\hat{a} \hat{c}$, are collinear.
 - 2. Find the middle terms in the expansion of $(2x+\frac{3}{x})^9$
 - 3. Solve the following system of equations using determinants.x+2y-z=33x+y+z=4, x-y+2z=6
 - 4. If $A = \begin{bmatrix} 5 & 3 \\ 2 & 2 \end{bmatrix} B = \begin{bmatrix} 7 & 5 \\ 4 & 3 \end{bmatrix}$ Show that $(AB)^{-1} = B^{-1}A^{-1}$ 5. Evaluate $\int_{0}^{\pi/2} \sin^{3}x dx$

 - 6. Find the area enclosed by one arch of the curve $y=\sin 3x$ and the x axis.
 - 7. Solve $\frac{dy}{dx} + y \ cotx = \text{Cosecx}$ $(5 \times 6 = 30)$

PART-C

[Maximum Marks: 60]

(Answer one full question from each Unit. Each full question carries 15 marks)

UNIT - I

- III. (a) Find the projection of the line joining (1,-2,-1) to (3,1,1) on the vector 4i-3j+12k (5)
 - (b) Find the work done by the force F=î + 2ĵ + k̂ acting on a particle which is displaced from the point with position vector 2î + ĵ + k̂ to the point with position vector 3î + 2ĵ + 4k̂
 (5)
 - (c) Find the term independent of 'x' in the expansion of $\left(x^2 \frac{1}{x}\right)^9$ (5)

OR

IV. (a) Find the area of a triangle whose vertices are represented by the vectors $A(\hat{i} + 3\hat{j} + 2\hat{k})$, $B(2\hat{i} - \hat{j} + \hat{k})$ and $C(-\hat{i} + 2\hat{j} + 3\hat{k})$.

(b) Find the moment about the point $\hat{i} + 2\hat{j} - \hat{k}$ of a force represented by $\hat{i} + 2\hat{j} + \hat{k}$ acting through the point $2\hat{i} + 3\hat{j} + \hat{k}$ (5)

(5)

(c) Expand
$$\left(x^3 - \frac{1}{x^2}\right)^5$$
 binomially. (5)

UNIT - II

V. (a) Find A and B if A+2B=
$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$$
 2A+3B= $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \end{bmatrix}$ (5)

(b) If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & -1 \\ 3 & 0 & 1 \end{bmatrix}$$
 Prove that $A^3 - 3A^2 + 3A - I = 0$ (5)

(c) If
$$\begin{vmatrix} x & 1 & 3 \\ 4 & 1 & -1 \\ 2 & 0 & 3 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 1 \\ 3 & 0 & 1 \\ -1 & 0 & 2 \end{vmatrix}$$
 Find 'x'. (5)

OR

VI. (a) Find the inverse of
$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
 (5)

(b) Find the values of x,y,z and w that satisfy the matrix relationship

$$\begin{bmatrix} x+3 & 2y+4\\ z+4 & 4x+5\\ w-3 & 3w+1 \end{bmatrix} = \begin{bmatrix} 1 & -5\\ -4 & 2x+1\\ 2w+5 & -23 \end{bmatrix}$$
(5)

(c) Show that every square matrix can be expressed as the sum of two matrices of which one is symmetric and the other is skew symmetric.(5)

VII. (a) Evaluate (i) $\int \frac{\cos x}{\sqrt{\sin x}} dx$	(3)
(ii) $\int \sec^2(7x+2)dx$	(2)
(b) Evaluate $\int tan^{-1}x dx$	(5)
(c) $\int_0^{\pi/2} \sin 3x \cdot \cos x dx$	(5)

OR

VIII. (a) Evaluate
$$\int \frac{2+3 \sin x}{\cos^2 x} dx$$
 (5)
(b) Evaluate $\int \frac{\sin^{-1} 2x}{\sqrt{1-4x^2}} dx$ (5)

(c) Evaluate
$$\int_0^2 x^2 \log x \, dx$$
 (5)

UNIT - IV

IX.	(a)	Find the area enclosed between the curve $y=x^2$ and the straight line $y=3x+4$.	(5)
	(b)	Find the volume generated when the portion of the parabolas $y^2=4x$ between $x=0$ and $x=2$	
		revolves about the x-axis.	(5)
	(c)	Solve $\frac{dy}{dx} = \frac{xy^2 + x}{yx^2 + y}$	(5)

OR

X. (a) Find the volume of the ellipsoid when the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is rotated about the x-axis. ((5)
---	-----

(b) Solve
$$(1+x^2)\frac{dy}{dx} + y = e^{tan-1}x.$$
 (5)

(c) Find the area bounded by the curve $y=x^2+x$ and the x-axis. (5)
