TED (15/19)3042 (Revision – 2015/19)

N22 - 07887

Reg. No..... Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2022

DIGITAL ELECTRONICS

[Maximum Marks: 100]

[Time: **3** Hours]

PART-A

[Maximum Marks: 10]

I. (Answer *all* questions in one or two sentences. Each question carries 2 marks)

1. Name the Unweighted code in which the successive codes differs by only one bit.

- 2. State De-Morgan's theorem.
- 3. Define the term Fan-out.
- 4. Identify the need for Master Slave JK flip flops.
- 5. Calculate the number of flip flops required to construct a Mod-30 counter. $(5 \times 2 = 10)$

PART-B

[Maximum Marks: 30]

II. (Answer *any five* of the following questions. Each question carries *6* marks)

1. Convert the following.

(a) $(726)_{10}=(X)_2$ (b) $(101011011)_2 = (X)_{16}$ (c) $(1C7)_{16}=(X)_{10}$

2. "NAND gate is a universal gate" Justify this by designing a NOR gate using NAND gates only.

- 3. Draw and explain the circuit of TTL inverter.
- 4. Write the working of a Full adder circuit with truth table.
- 5. Identify any three differences between synchronous and asynchronous sequential logic circuits.
- 6. Draw and explain the working of a SR flip flop using NAND gates.
- 7. Draw and describe the working of a counter which count from 0 to 7 with synchronous input.

 $(5 \times 6 = 30)$

(5)

PART-C

[Maximum Marks: 60]

(Answer one full question from each Unit. Each full question carries 15 marks)

UNIT – I

- III. (a) Minimise the following function using K Map, and realize using logic gates. $F=\Sigma_m(0,2,3,4,6,7,10,11,12,14,15)$ (10)
 - (b) Subtract 1001 from 1111 by using 2's complement method.

OR

IV. (a) Design a circuit for the following function through SOP form.	
$F =_{(ABC)} = \Sigma_m(0,2,3,4,6,7)$	(9)
(b) Write short note on the need for binary number system in digital technology.	(6)

UNIT – II

V. (a) With a block diagram, explain the working of a 4 bit parallel binary adder.	(9)
(b) Compare SSI,MSI, LSI and VLSI levels of integration.	(6)

OR

VI. (a) Explain the operation of a 4 X 1multiplexer with block diagram, truth table and expression	a. (9)
(b) Compare TTL with CMOS logic family in terms of any three parameters.	(6)

UNIT-III

(12)
(3)
(8)
(7)
(9)
(6)

OR

Х.	(a) With a neat diagram explain the operation of a 3 bit Up-Down counter.	(8)
	(b) Illustrate the working of a R-2R ladder type DAC.	(7)
